C
b a world of gaming g

REAL TIME USER
INTERACTIONS

What can go wrong? Where’s the problem?




Examples of Game Actions

Synchronization Strategies




Context: Social Games

Social Games are
e social: play with your friends on a social network
e casual: 5 minutes are enough to play
e easy:simple tolearn

e massive in scale: played by millions every day

e everywhere: can be played using a web browser




Context: Basic setup

The server is more than just a database

e (lient: loads complete state from server at session
start, all state changes (actions) are sent to server

e Server: keeps state in RAM, all client actions are
replayed and validated, state is updated
accordingly, persistence can be ignored (for now)

e The client should never wait on a server response
when executing actions to ensure best usability




Context: User Interaction

Most social games use asynchronous interaction

e Player A sends a message that player B interacts
with when he comes online.

e Examples are Facebook’s feedposts and requests.

e Think of a message inbox that is processed when a
player comes online.




Context: User Interaction

This is about Real Time User Interaction

e Player A watches player B doing something, i.e.
their client display the other players actions.

e Both players are online at the same time.

e Since the game is browser based communication
delays of up to 2 (even 10!) seconds are possible.

e Player actions may conflict - like two players trying
to pick up the same item from the floor.




Context: Game Concepts

Some key concepts of “our” game are:

e Location: Each player has a location that she
manages.

e Visits: Players can visit friends’ locations: Players
are either “at home” or “at a friend’s location”.

e Offline: After some inactivity, players become
offline. This means that other player can no longer
see or interact with them (they “left” the game).




Examples of Game Actions

Synchronization Strategies




Examples of Game Actions

Imagine this scenario:

e Players manage their garden with a lot of fruit
trees.

e Players can chop down trees, pick fruits, sell fruits,
plant new trees etc.

e Players can visit other player’s location and can do
the same actions there as they can do in their own

garden.




Examples of Game Actions

Positive example: Something we can handle easily

e Players can add stones to a stone pyramid at the
bottom of a tree. The higher the pyramid the
more fruits any player can pick from the tree.

e [nternally this would probably be increment
operations on an integer keeping track of the
number of stones. Easy unless you have overflow.




Examples of Game Actions

Negative example: A conflict we cannot handle

e Player Ais trying to chop down a tree while player
B is trying to climb that.

e Onlyone action can (or should :-) ) win. Either
player A or B should do their action, but not both!




Examples of Game Actions

Indifferent example: Something we might handle

e 5 appleslie on the floor. Both player A and B try to
pick up 3. Then they want to sell them.

e We might actually let both players sell 3 apples
because it “feels” better from the player
perspective than “rolling back” one action and
thus probably failing the subsequent sell action.




Context

Examples of Game Actions

Synchronization Strategies




Synchronization Strategies

A player’s client running in a browser sends http
requests to a central server whenever it’s game state is
changed by a player action.

The game servers replays (and validate) the client
action to update it’s internal game state of that
players.

Due to communication lags (up to 10 seconds) the
internal state presentation between client(s) and
server is only eventually consistent.




Synchronization Strategies

If two players update the same state, i.e. they are at
the same location, things get more complex.

e Both clients and the server have different views on
the state.

e (lient actions may be conflicting, i.e. an action by
one client may make the action of another one
impossible or affect its outcome.

e We identified 3 options to approach this problem.




Synchronization Strategies

Option 1: Pessimistic conflict resolution

e Before a client does an action that may result in a
conflict, it checks with the server if the action is
valid. Very similar to 2-phase-commit approach.

e The server’s state is relevant, clients have only
views of the server state.

e Bad for player experience as on a click their will a
second-long delay to wait for the server response.




Synchronization Strategies

Option 2: Optimistic conflict resolution

e (Client executes the action and informs the server
afterwards. Server then checks the action. Client
may need to roll back action in case of a conflict.

e Conflict handling on the server only, client may
need to rollback changes.

e Bad for player experience as player action may
suddenly be rolled back.




Synchronization Strategies

Option 3: Schizophrenic conflict resolution

e When player B visits player A a copy of the game
state created, so that both have their own copy.

e Own actions are simply executed and actions by
other players are checked if they are conflicting.
Conflicting actions are simply ignored.

e Negative: Complex and conflicts are only delayed
until the next session start (but are less obvious)




